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A splitting scheme for the numerical integration in phase-space of the one-dimen- 
sional Vlasov equation has been recently proposed by Cheng and Knorr [l]. In order 
to test and to compare the accuracy and stability of this method with respect to other 
methods (especially with respect to results recently obtained using a hybrid model 
proposed by Denavit [2]), and with the intent of extending it to the numerical 
integration of a two-dimensional Vlasov equation, a numerical code has been 
developed using this new method. To make the scheme more economical, the inter- 
polation procedure presented by Cheng and Knorr [l] has been slightly modified; 
this optimization is essential if one intends to solve the two-dimensional Vlasov 
equation. 

The pertinent equations in dimensionless form are 

aqax = s" f dv - 1, 
-co 

where the symbols have their conventional meaning. 
The method used by Cheng and Knorr [l] consisted in splitting up the free-streaming 

term and acceleration term in Eq. (1) and solving first the free-streaming term 

(aflat) + w7w = 0 (3) 

and then solving the acceleration term 

(ww + w, ww4 = 0. (4) 

The integration of Eqs. (3) and (4) was reduced to the following shifting sequence of 
the distribution function [I] 

f*(x, v) = fyx - u At/2, u), (5) 
f**(x, u) = f*(x, v - E(x) At), (6) 
fn+l(x, v) = f**(x - u At/2, v), (7) 

445 
Copyright 0 1977 by Academic Press, Inc. 
Au rights of reproduction in any form reserved. ISSN 0021-9991 



446 GAGN6 AND SHOUCRI 

where f” denotes the value of the distribution function at a time t = II d t. The electric 
field used in Eq. (6) for the shift was calculated from f*(x, U) given in Eq. (5). The 
results obtained by this method are of second order in dt. 

The successive shifts in Eqs. (5)-(7) were effected by interpolating the value of S 
in the x and v directions. A Fourier interpolation technique was used for the x 
direction, and a cubic spline interpolation technique was used for the z’ direction [l]. 
Interpolating N values of f with the Fourier interpolation technique requires a 
computational effort proportional to N2. The results reported in [l] used N = 8,16 
and consequently the computation time remained reasonable. However, when N 
becomes large (we take N = 64 in our present calculations), or when dealing with 
problems of higher dimensionality it is more advantageous to use periodic splines 
[4], where the number of operations grows with N only. For this reason. in the present 
code a cubic spline interpolation has been used to calculate the successive shifts 
in Eqs. (5)-(7). 

As a test case we consider the linear Landau damping and the subsequent amplitude 
oscillations which develops for small values of y/wb [5] (y is the linear Landau 
damping rate and ‘+, is the bounce frequency of the trapped particles). The initial 
condition is 

where 01 = 0.01, the periodic length of the system is L = 207T, k = 2m/L with 
n = 3, At = *, and fO(v) = (27~)-l/~ exp(--v2/2) with Vmax = 5.0. We are using a 
number of points N = 64 in the x direction, and a number of points 2M = 128 
in the v direction; this is the equivalent of using 8192 “particles.” The computation 
results are shown in Figs. (l)-(3). In Fig. 1, the electric energy is plotted, against time, 
on a linear scale; it shows the initial exponential decay due to Landau damping, 
followed by the amplitude oscillation predicted by the theory [5]. The recurrence 
effect, occuring at TR = 2r/(k Au) RS 266, is clearly apparent on Figs. 1 and 2 
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FIG. 1. Plot of the electric energy (in arbitrary units) against time (in units w;‘). The arrow 
indicates the electric energy at t = 0. 
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(a similar recurrence time can be obtained by no less than 1600 Hermite polynomials 
when using the Hermite polynomials expansion method). Figure 2 shows the electric 
field excited at t = 0 with n = 3 plotted on a logarithmic scale; it follows closely 
the oscillating behavior of Fig. 1. The calculated initial numerical values for o/ml, 
and y/we are, respectively, 1.165 and 0.0125 (while for k = 0.3, the corresponding 
theoretical values are 1.1598 and 0.01262). The bounce frequency We of the trapped 
particles is wJo9 = (o1/2)‘/* = 0.0707, hence y/w6 = 0.176, which is well within 
the range of values where amplitude oscillations should occur [5]. The relative error 
in energy conservation at w,t = 250, just before recurrence occurs (i.e., after 2000 
time-step) was about 1O-s (we are using single precision arithmetic); the computational 
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FIG. 2. Plot on a logarithmic scale of the absolute value of the Fourier mode En with k = 2mz/L 
(n = 3, L = 2Chr), against time. 

time required (CPU time) up to w,t = 250 was approximately 4100 seconds which 
corresponds to a computational effort of 0.25 msec per particle per time-step (At = &), 
using an IBM 370/l 55. It should be noted that the results recently reported by Shoucri 
and Gagn6 [6], with the Hermite polynomials expansion method, used a time-step 
dt = l/16 in order to avoid numerical instabilities which developed when using larger 
values of At. 

Results have been recently reported [3], where the numerical calculation has been 
carried out up to w,t M 280. The calculations used a hybrid model proposed by 
Denavit [2] which can reduce the fluctuations inherent to the particle simulation 
model. The calculations reported in [3] used 8192 particles, which makes them 
equivalent to our present work; in these calculations, however, a smoothing operation 
had to be repeated every 16 time-steps in order to combat a streaming instability 
inherent to the numerical code. Contrasting with this, there is no smoothing operation 
at all applied in our present calculations; if a smoothing of the ripples of the distri- 
bution function had been applied as was effected in [l], our present results would 
have been obtained using much less than the equivalent of 8192 particles. Most 
important in our results is the absence of problems associated with thermal fluctuations 
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of the macroscopic quantities; this makes the study of the behavior of very small 
amplitude waves possible in a very accurate manner. 

The computed distribution function presented in Fig. 3 shows the existence of a 
perturbation in the region around z, = w/k zli 3.84; a bump is formed which reaches 
a maximum height for o,t N_ 73 and w,t N 230, two values which, in Fig. 1, corre- 
spond respectively to the first and the second amplitude minima. The formation of 
the bump is accompanied by a positive slope in the distribution function which causes 
the growth of waves with phase velocities lying in that region of the bump, and, also, 
causes the amplitude in Figs. l-2 to reach a maximum and then decrease when the 
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FIG. 3. Temporal behavior of the spatially-averaged distribution function. The phase velocity 
of the wave excited at t = 0 is indicated by an arrow. 

slope of the distribution function turns to negative. The height of the bump, for 
increasing values of w$, becomes progressively smaller on its reappearances because 
of phase mixing of the trapped particles. All the excited modes remained smaller than 
the mode n = 3 by at least two orders of magnitude, so that most of the electric 
energy was concentrated in the n = 3 mode. The curves in Figs. l-3 show that the 
oscillations are occurring around an asymptotic value close to the plateau given by 
the curve for w,t = 195 in Fig. 3. 

The displacement of the averaged distribution function, from its equilibrium 
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Maxwellian value, is very small (the peak in Fig. 3 at o,t = 240 is only about 
0.2 x lO-3 higher than the Maxwellian curve represented by the full line). 

The results presented indicate that the code is stable, accurate and efficient. The 
code is actually being used to study the behavior of a monochromatic wave for much 
longer times [7] than has been done here. Work is also in progress to use it in a two- 
dimensional scheme for the numerical solution of Vlasov equation [S], and to compare 
the results thus obtained, with those recently reported using the Hermite polynomials 
expansion method [9]. We intended in the present note to illustrate the method using 
an amount of information equivalent to the one used in [3] in order to make a qualita- 
tive comparison possible. 

ACKNOWLEDGMENTS 

The authors are grateful to the computer Center StatI at Lava1 University for much assistance. 
M. Shoucri is grateful to Professor G. Rnorr and Dr. C.-Z. Cheng for many fruitful discussions. 

REFERENCES 

1. C.-Z. CHENG AND G. KNORR, “The Integration of the Vlasov Equation in Contiguration Space,” 
Univ. of Iowa Rep. No. 45-24 (1975), to be published in J. Computationul Phys. 

2. J. DENAVIT, J. Computational Phys. 9 (1972), 75. 
3. Y. MATSIJDA AND F. CRAWFORD, Phys. Fluids 18 (1975), 1336. 
4. F. B. HILDEBRAND, “Introduction to Numerical Analysis,” Chap. 9, McGraw-Hill, New York, 

1974. 
5. T. M. O’NEIL, Phys. Fluicls 8 (1965), 2255; V. L. BAILEY AND J. DENAVIT, Phys. Fluids 13 (1970), 

451; R. SUGIHARA AND T. KWIMTJRA, J. Phys. Sot. Japan 33 (1972), 206; I. H. QEI AND D. G. 
SWANSON, Phys. Flui& 15 (1972), 2218. 

6. M. SHOUCRI AND R. R. J. GAGN& J. Computational Phys. 21 (1976), 238. 
7. M. SHOUCRI AND R. R. J. GAGN& Nonlinear behavior of a monochromatic wave in a one- 

dimensional Vlasov plasma, submitted to Phys. Fluiak 
8. M. Shoucri and R. R. J. GAG&, “Splitting Schemes for the Solution of a Two-Dimensional 

Vlasov Equation,” to be presented at the APS-CAP Joint Congress, Lava1 Univ., Quebec City, 
June 1976. 

9. M. SHOUCRI AND R. R. J. GAGNB, to be published in J. Computational Phys. 

58112414-8 


